Gallium disrupts iron metabolism of mycobacteria residing within human macrophages.
نویسندگان
چکیده
Mycobacterium tuberculosis and M. avium complex (MAC) enter and multiply within monocytes and macrophages in phagosomes. In vitro growth studies using standard culture media indicate that siderophore-mediated iron (Fe) acquisition plays a critical role in the growth and metabolism of both M. tuberculosis and MAC. However, the applicability of such studies to conditions within the macrophage phagosome is unclear, due in part to the absence of experimental means to inhibit such a process. Based on the ability of gallium (Ga(3+)) to concentrate within mononuclear phagocytes and on evidence that Ga disrupts cellular Fe-dependent metabolic pathways by substituting for Fe(3+) and failing to undergo redox cycling, we hypothesized that Ga could disrupt Fe acquisition and Fe-dependent metabolic pathways of mycobacteria. We find that Ga(NO(3))(3) and Ga-transferrin produce an Fe-reversible concentration-dependent growth inhibition of M. tuberculosis strains and MAC grown extracellularly and within human macrophages. Ga is bactericidal for M. tuberculosis growing extracellularly and within macrophages. Finally, we provide evidence that exogenously added Fe is acquired by intraphagosomal M. tuberculosis and that Ga inhibits this Fe acquisition. Thus, Ga(NO(3))(3) disruption of mycobacterial Fe metabolism may serve as an experimental means to study the mechanism of Fe acquisition by intracellular mycobacteria and the role of Fe in intracellular survival. Furthermore, given the inability of biological systems to discriminate between Ga and Fe, this approach could have broad applicability to the study of Fe metabolism of other intracellular pathogens.
منابع مشابه
Iron acquisition by Mycobacterium tuberculosis residing within myeloid dendritic cells.
The pathophysiology of Mycobacterium tuberculosis (M.tb) infection is linked to the ability of the organism to grow within macrophages. Lung myeloid dendritic cells are a newly recognized reservoir of M.tb during infection. Iron (Fe) acquisition is critical for M.tb growth. In vivo, extracellular Fe is chelated to transferrin (TF) and lactoferrin (LF). We previously reported that M.tb replicati...
متن کاملA method to extract intact and pure RNA from mycobacteria.
We describe a high-yielding, simple, and aerosol-free protocol for the isolation of RNA from mycobacteria that does not require sophisticated instruments. The method yielded 50 μg of RNA from 10(7) cells, 50 times more than a recently reported method. Our method can extract total RNA from aerobically grown bacteria and from in vitro hypoxia-induced dormant bacilli and mycobacteria residing with...
متن کاملUtilization of External Growth Factors by Intracellular Microbes: Mycobacterium Paratuberculosis and Wood Pigeon Mycobacteria.
Wheeler, William C. (Johns Hopkins University-Leonard Wood Memorial Leprosy Research Laboratory, Baltimore, Md.), and John H. Hanks. Utilization of external growth factors by intracellular microbes: Mycobacterium paratuberculosis and wood pigeon mycobacteria. J. Bacteriol. 89:889-896. 1965.-The extent to which the intracellular growth of microbes is dependent upon capacities for growth in vitro...
متن کاملSurvival of Mycobacteria in Macrophages Is Mediated by Coronin 1-Dependent Activation of Calcineurin
Pathogenic mycobacteria survive within macrophages by avoiding lysosomal delivery, instead residing in mycobacterial phagosomes. Upon infection, the leukocyte-specific protein coronin 1 is actively recruited to mycobacterial phagosomes, where it blocks lysosomal delivery by an unknown mechanism. Analysis of macrophages from coronin 1-deficient mice showed that coronin 1 is dispensable for F-act...
متن کاملMycobactin-mediated iron acquisition within macrophages.
Restricting the availability of iron is an important strategy for defense against bacterial infection. Mycobacterium tuberculosis survives within the phagosomes of macrophages; consequently, iron acquisition is particularly difficult for M. tuberculosis, because the phagosomal membrane is an additional barrier for its iron access. However, little is known about the iron transport and acquisitio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 68 10 شماره
صفحات -
تاریخ انتشار 2000